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1.1

CHAPTER I

Introduction and Qutline of Report

The impact of modern control theory has yet to make itself felt in
a large percentage of industrial, military, and space applications. ¢
reason for this is the fact that those in responsible positions had already
graduated from the Universities before the state space methods were intro-
duced. Since state space methods have been identified with the time
domain and integral performance indices, these methods are not familiar to
any except recent graduates.

This report outlines a method of linear system synthesis using state
variable feedback that does not require a use of the time domain or of
vector, matrix equations. The state variables are identified as the real,
physical quantities that actually exist in the system, rather than as
abstract mathematical inventions. The design criteria is the desired
closed loop response, and only algebra is needed to complete the synthesis.

This report differs markedly from the previous reports that have been
submitted on this contract. This report attempts to reduce the application
of modern control theory to practice, while previous reports have been more
theoretical in nature. This is in line with the policy agreed upon with the
contracting agency, namely that some of our reports should be directed to
the practicing engineer rather than the researcher.

The H equivalent method of linear system synthesis makes up the
body of the report, and this is contained in Chapter 2. The further effort

suggested by this research is briefly mentioned in Chapter 3.
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Chapter 2 has a number of sections. After a brief introduction in
Section 2-1, alternate means of representing state variable feedback systems
are discussed in Section 2.2. The approach of this chapter is related to
the familiar technique of Guillemin and Truxal in the following section.

The H equivalent method is introduced in Section 2-4, and applied to the
simplest case. Modifications that are possible when all the state variables
are not availlable are discussed in Section 2.5, and the general case is treated
in Section 2.6, Sections 2, 4, 5, and 6 include definite design procedures
that may be applied in practice today. A number of less difinitive

alternate approaches are considered in Section 2.7, and the Chapter is
concluded in the final section.

The topics mentioned in the chapter on further study are those topics
that have been suggested by this report. Other topics not related to this

report are included in the other volumes.
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CHAPTER II

Introduction

This Chapter outlines a new method of system synthesis for single input,
single output, linear control systems. The method is based on the feedback
of all of the state variables through constant gain elements. If all of the
state variables are not available, these are effectively simulated by intro-
ducing dynamics in the feedback paths of those variables that are available.
In the case when only the output variable is available, which is never, the
method reduces to that of Guillemin and Truxal. The last section of this
Chapter alludes to work that is now in progress to extend this approach to
nonlinear systems and to multiple input, multiple output systems.

Although this work is based directly upon a joint application of the
Second Method of Liapunov and the Yaximum Principle of Pontryvagin, the lan-
guage of this Chapter is almost exclusively the Laplace transform rather than
vector, matrix algebra. This is in line with the policy stated in Chapter I,
namely that the report shall be written so as to convey the greatest amount
of information to the greatest number of readers in the least painful form.
In a few cases an equivalent matrix equation is given, but the material is
completely consistent without these matrix equations. Because of this some-
what artificial restriction that the authors have placed upon themselves,
the results presented here are lacking in proof. On the basis of a few
examples, a general conclusion 1s stated, although a reference is always

given. This approach may be somewhat contrary to the accepted scientific

3
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method, but experience has shown that it is pedagogically sound. The inter-
ested reader mav find a more detailed and extensive treatment in the references.

System Representation

A conventional feedback control configuration is shown in Fig. 2.2-1.
In this block diagram the transfer function of the plant being controlled is
labled Gp(s). Usually this plant is unalterable, and the dynamics of the
overall closed loop system are controlled by the use o
tion with series and feedback compensation networks. The transfer function
of the series compensation network is designated Gc(s), and H(s) is the transfer
function of the feedback compensation elements. The Laplace transform of the
input and output are R(s) and C(s) respectively. This notation is common
in texts on control engineering.

In the pages that follow we continue to refer to the fixed plant as
Gp(s). The transfer function of the overall closed loop system, C(s)/R(s),
is simply referred to as the transfer function of the system. That portion
of the system that is not included in the plant is designated as the control-
ler. In Fig. 2.2-1, for instance, the controller would consist of Gc(s),

H(s), and the summer immediately preceeding Gc(s).

A conclusion of modern control theory is that in order to minimize an
integral type performance index involving a quadratic function of the state
variables and the control effort, it is necessary to feedback all of the state
variables through constant gain elements. In this Chapter we are not inter-
ested in integral type performance indices. The criteria to which we shall
design is a statement of the desired closed loop frequency response. However,
we make use of the important conclusion of modern control theory, namely that

all of the state variables should be fed back. If C(s)/R{(s) has an n th order

characteristic equation, the svstem is describable in terms of n state variables.
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These state variables are not unique, and any n variables which are capable
of completely specifying the system behavior are satisfactorv. Here we
concentrate on one specific set of state variables, the real, physical,
variables in which the plant and compensator differential equations are
written. The point is that one need not make a big issue over state vari-
ables -~ they are present in the describing differential equations.

Thus far we have accepted only one conclusion from modern control
theory -~ namely, '"feedback all the sﬁgte variables.” 1In order to picture
how this might be accomplished, the conventional control configuration of
Tig. 2.2-1 is not adecuate. The inadequacy of Fig. 2.2-1 stems from the
"transfer function' approach to control system analysis and design that has
become so popular in the past twenty years. The philosophy of the "transfer
function'" approach is this. The physical system to be controlled, the
plant, is described by differential equations. These differential equations
are transformed and the result described in block diagram form. Now the
physical origins of the problem are no longer important. It does not matter
if the phvsical svstem being controlled is a reactor or a positioning servo-
mechanism. The problem has been reduced to a standard form, for which a
variety of analysis and synthesis methods have been developed.

This general idea of making all problems look alike has met with remark-
able success over the years., For example, a specialist in positioning systems
can work on reactor control, once he has been given the governing equations.
However, the strength of this approach is also its weakness. By making all
systems look alike in their transformed form, the physical origins of the
problem are no longer apparent. But if all of the state variables are to be
fed back, then the variables whose identity has been obscured by the transfer

function approach must be important. This is the basic difference between
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the modern design philosophy and the conventional design philosophy. The
modern approach requires a maximum of detail in the svstem representation,
so that all of the state variables mav be recognized. Hopefully, these
variables are also available for measurement and control.

Modern control theory, particularly the Maximum Principle, makes no
provision for increasing the order of the plant to be controlled by the
ition of series compensation. The design pchedure advocated here does
make use of series compensation, in addition to state variable feedback
through constant gain elements. This provision is anticipated in Fig. 2.2-1
by labeling the forward transfer function, Gc(s)Cp(s) as simply G(s). To
allow for series compensation in the final design technique, we shall dis-
cuss control of the modified plant, G(s), rather than the plant itself. Of
course, G(s) is just the plant if no series compensation is needed. Fig.2.2-2
defines the notation th;t is used to represent the transfer function G(s),
as well as the designation of the system state variables, Xy to xn, Note
that on the diagram the state variables are not designated as xi(s) or as
Xi(t)' Strictly speaking, they should be designated as xi(s), since this is
a block diagram. But these variables are real, phvsical system variables
that exist in time, hence the unusual notation. Whether xi(s) or xi(t) is
intended is always clear from the context.

Several other comments about Fig. 2.2-2 are in order. The state vari-
ables indicated are assumed to be actual physical variables, related to each
other by definite gains and time constants that are inherent to the system
being controlled. This is not always a realistic assumption, as with complex
conjugate poles, for instance, However, this assumption will be maintained

here in order to initiate the discussion.
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The closed loop state variable feedback configuration associated with
Figure 2.2-2 is indicated in Fig. 2.2-3. Here the ki's are all assumed to

be constant. The overall design problem that faces us is now clear in terms

~

how shall we k the order of C{s)

of Fig. 2.2-3. 1f Gp(s) is of order p, h hall we pick the order
and how shall we evaluate all of the feedback coefficients, ki’ in order to
realize a desired system behavior? This chapter is devoted to answering

this question.

In terms of modern control theorv, the system of Fig. 2.2-3 is overly
restrictive, in the sense that the state variables are specifically indicated.
A particular designer mav wish to use the output and its n-1 derivatives as
an alternate choice of state variables. This is, of course, a possibility,
but not one that is considered here.

The system of Fig. 2.2-3 may appear overly restrictive in another way,
since only one zero is indicated in the i th block. This is meant to imply
that a zero may appear in any block, that is, i can be any number from 1 to m.
In the general case there are m of these zeroes, and there is no restriction
on which block any of the m zeroes may occupy.

The system configuration of Fig. 2.2-3 is not a convenient one with
which to work because of the many inner loops. These inner loops may be
eliminated by block diagram reduction. Two systematic methods of block
diagram reduction immediately suggest themselves, and these are referred to
as the Geq(s) reduction and the Heq(s) reduction, as indicated in Fig. 2.2-4.
This is read as the G equivalent reduction and the H equivalent reduction.

Both of these transfer functions are referred to as being "equivalent' because

neither exists physically in the actual system. These block diagram reductions
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‘ R(s) + E(s) & (s) Xl(s) = C(s)
' - eq
i .
l. Fig. 2.2-4a The Geq(s) representation of Fig. 2.2-3,

R(s) <+ E(s) G (s) XI(S) = C(s)

Heq(S)

Fig. 2.2-4b. The Heq(s) representation of Fig. 2.2-3.

Fig. 2.2-4. Alternate simplified block diagram reductions of Fig. 2.2-3.




12
are just convenient ways for us to view the problem.

The Geq(s) reduction is accomplished by starting with the innermost
loop, and combining the feedback coefficient kn with the transfer functien
Kn/s + a. Once this is accomplished, km1 forms the feedback coefficient
for what is now the innermoét loop. This procedure is repeated until no
inner loops exist. The resulting zeroes of Geq(s) are identical to those of
G(s), but the pole locations are different.

The Heq(s) reduction also begins with the feedback coefficient kn.

This feedback coefficient is moved to the right on the block diagram by
multiplying it by the reciprocal of the transfer function xn_l(s)/xn(s),

and then combining the result with kn—l' Each of the feedback coefficients
is successively moved forward, until all are ultimately combined with k1
to yield Heq(s). In the final block diagram, G(s) appears unaltered.

As an example of a block diagram reduction to both the Geq(s) form and
the Heq(s) form, consider the position control system of Fig. 2.2-5, shown
in block diagram form. In order to give a physical connotation to the state
variables, gains, and time constants indicated on Fig. 2.2-5, one may assume
that the physical system from which this block diagram was derived contained
a field controlled DC motor as a power element. In this particular case the

state variables and time constants may be easily identified on the block

diagram of Fig. 2.2-5. If the output variable is actually 6, then x, is 8,

1

x, is de/dt, and Xq is the motor field current. The gain K, = 2 is a phvsical

2
propefty of the motor that relates the motor velocitv to the motor field

current, and the pole at s = -3 1is associated with the mechanical time con-
stants of the system. The gain K3 = 3 is also an inherent motor character-

istic relating field current to voltage input to the field. The pole at

s = -10 ishassociated with the electrical time constant of the field
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3 3 2 *) 1 xp(s) = Cls)
s+10 s + 3 $
Fig. 2.2~5a The plant to be controlled.
|
|
X4 x, xl(s) =C(s)
K 3 2 1
s+10 s+3 a
ks
2
kl

Fig, 2.2-5b. The system, including the plant and the controller.

Fig. 2.2-5., A simple positioning sServomechanism using state variable feedback.
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c¢ircuit. The gain K is an ideal gain constant associated with an electronic
amplifier.

The procedure for reducing the third order svstem of Tig. 2.2-5 to the
Geé(s) form is indicated in a step-by-step fashion in Tig. 2,2-6, where Ccn(s)

S

is found to be

G (8) = — ox (2.2-1)
N s{s® + (13+3Kk3)s + 30 + 9Kk3 + 6Kk2]

Note that the right hand pole of Fig. 2.2-5, that is, the pole at s = 0
remains unaltered in Geq(s), and the two remaining poles are specified in
terms of a second order polynomial in s. If it i{s assumed for the time being
that K is fixed, then in the second order polynomial there are still two
free coefficients, kz and k3. By specifving particular values of kz and k

the open loop poles of Geq(s) may be placed at any desired location on the

3

s plane.

The closed loop transfer function C(s)/R(s) is also indicated in

C(s)/R(s) = 3 2—@ —————— (2.2-2)
s” + (13+3Kk,)s” + (30+9Kk,+6Kk,)s + 6Kk,

Here the denominator of C(s)/R(s) is a cubic in s, now with 3 unspecified
constants, kl, kZ’ and k3. Thus the closed loop poles of the system may be
located anywhere on the s plane by suitable choice of the three feedback
coefficients. This is a significant feature of state variable feedback.
The following general statement is true for the n th order case.
In the n th order case, n of the system poles, the poles of C(s)/R(s)
may be located anywhere on the s plane by suitable choice of the n

feedback coefficients, ki.
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R s)+ 3K Xq 2 X, 1 XI(S) = C(s)
s+10+3Kk s+1 s
+
k
2
+ i
kl

Fig. 2.2-6a. First step in the reduction of Fig. 2.2-5 to the Gep(s) form.

+ xl(S) = C(s)

6K
Geq(s)=

s[sz+s(13+3Kk3)+30+9Kk3+6Kk2

Fig. 2.2-6b. The Geq(s) form of Tig. 2.2-5.

R(s) 6K C(s)

s + 32(13+3Kk3)+s(30+9Kk3+6Kk2)+6Kk1

Fig. 2.2-6c. The closed loop transfer function fer Tig. 2.2-5.

Fig. 2.2-6. Steps in the block diagram reduction of Fig. 2.2-5 to the Ge (s)
form, and ultimately to the form of C(s)/R(s). q
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+

+ x x x,ks) = C(s)

3K 3 2 2 1
? - s+10 8+ 3 S

3
kot —
+Ji

Fig. 2.2-7a. First step in the reduction of Fig. 2.2-5 tc the Heﬂ(s) form.
4

R(s) 6X x,(s) = C(s)

s (s+1) (s+10)

Heq(s) = kl+k25+k35 (s+3)/2

Fig. 2.2-7b. The Heq(s) forn of ¥ig. 2.2-5.

Fig. 2.2-7. The reduction of Fig. 2.2-5 to the Heq(s) form.
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This statement is proved by Brockett (196 ) and discussed at some length by
Schultz and Melsa (1966). The importance of this statement is diffiecult to
overemphasize.

In practice, k, is usually specified to insure zero steadv state error,

1
For example, in the positioning system of Fig. 2.2-5, or in any case with an

is made equal to 1. The ability to position all n

integrator in Gp(s), kl

poles is retained If the amplifier gain K is assumed to be adjustable. This
is often true in practice.

On the basis of the discussion thus far, we already have at least a
tentative design procedure. For a given G(s), pick a desired C(s)/R(s),
with a compatible number of poles and zeroes. Equate C(s)/R(s) in terms of
the ki's and K to the desired C(s)/R(s), and force the coefficients of like
powers of s to be equal. Often, however, G(s) is not given, only Gp(s),
with Gc(s) unspecified. Root locus techniques prove to be helpful in choosing
the form and tentative pole and zero locations that must be included in Gc(s).
Unfortunately, the Geq(s) formulation is not easily interpreted in terms of
root locus methods, because the pole locations are a function of K. This
is evident in the example being discuseeq here from Eq. 2.2-1. Hence we
turn our attention to the Heq(s) formulation.

The equivalent feedback compensator, Heq(s), for the problem of Fig. 2.2-5

is given in Fig. 2.2-7 as

2
k38 +s(2k2+3k3)+2k1

- -+ 2 = (2.2‘3)
Heq(s) kl+kzs+k35(s 3)/ 5

Here the numerator of H q(s) is a second order polynomial in s and contains
e

s i I f 'l”.
three feedback coefficients, kl, kz, and k3, and Heq(s) is not a function of K

I1f kl is chosen to insure zero steady state error for step inputs, the two con-

stants k2 and k3 are still available to insure that the roots of the second

order polvnomial may be any desired value.
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Observe that in this example Heq(s) has two zeroes, and these are not
accompanied by any poles. This is a highly desirable result in terms of
stability, since the open loop transfer function G(s)Heq(s) now has only one
more pole than zero. Clearly it would be impossible to build a device with
a transfer function Heq(s)’ but recall that Heq(s) does not exist as such

anywhere in the system. An effect equivalent to using a series compensator

with the transfer function Heq(s) is accomplished by means of state variabile
feedback.

The following statements are true not only for the example under dis-
cussion, but for the general n th order case. (Schultz and Melsa, 1966.)

1. Heq(s) has (m - 1) zeroes

2. If G(s) has no zeroes, then Heq(s) has no poles.

3. If G(s) has m zeroes, then

a. 1if all of the zeroes of G(s) are to the right of x on
Fig. 2.2-3, Heq(s) also has m poles, and these poles coincide
with the zeroes of G(s). The resulting open loop transfer
function, G(s)Heq(s), then has n poles and (n -~ 1) zeroes.

b. 1f one zero is to the left of X in Fig. 2.2-3, then Heq(s)
has (m - 1) poles, and these are coincident with the (m - 1)
zeroes of G(s) that lie to the right of x on Fig. 2.2-3. The
resulting G(s)Heq(s) has n poles and n zeroes.

4. Heq(s) is not a function of K.

The full significance of these statements is not apparent at this time,
since we have made no reference to stability, relative stability, or sensi-
tivity. The statements are simply a consequence of the Heq(s) representation
of a control system using state variable feedback. The following sections of
this chapter develop a synthesis procedure that depends on the truth of the

above statements with respect to Heq(s).
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The Cuillemin-Truxal Method

The design procedure advocated in this chapter Is based uron the
specification of a desired system transfer function, C(s)/R(s). TFortu-
nately, this is not a new idea, as this is also the basis for the Guillemin-
Truxal method of system synthesis. AThe motivation and advantages of such
an approach are well covered in Chapter 5 of Truxal's book "Control System
Synthesis,” (Truxal, 1955). Here onlv a few salient nointe are covered in

order to relate the Guillemin-Truxal method to that of state variable feed-

back.

The Guillemin-Truxal method is based upon the block diagram of ¥ig. 2.3-1.

Here again Gp(s) is the fixed plant, and CC(S) is to be determined, according
to the following three step procedure.
1. A desired closed loop transfer function, C(s)/R(s), is established
from the system specifications. This is expressed as a ratio of

polynomials, as

C(s) _ p(s) -
R(s) = q(s) (2.3-1)

2. The required Gc(s) is determined by solving the equation

C(s) _ p(s) _ _G(s) _ Gc(s)cp(s)«—
R(s) ~ q(s)  14G(s) 1+Gc(s)Gp(s)

(2.3-2)

for Gc(s).
3. The required Gc(s) i1s synthesized, usually through the use of
passive elements, as resistors and condensers.
Let us comment briefly on each of these three steps, and illustrate the
method by a simple example. The selection of a desired C(s)/R(s) is equiva-
lent to picking a specific time response for a given r(t). Alternately, it

is equivalent to picking the frequency response of the closed loop svstem.

|



H(s)

GC(S)

Gp(s)

C(s)

Fig. 2.3-1. The basic system configurafion associated with the
Guillemin-Truxal method.
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Hence, it is not important whether system specificaticns are given in the
frequency or in the time demain. FEither domain is a suitable basis for de-
ciding upon a desirable C(s)/R{s).

Step two requires only algebra. Once the system transfer function is

specified as a ratio of polynomials, C(s) is uniquely defined. 1If the plant

is given and unalterable, then Gc(s) is determined from the equation
G(s) = Cc(s)Gp(s) (2.3-3)

The synthesis techniques necessary to realize a given Gc(s) in step three
are more network problems than control system problems, and they are not con-—
sidered here. The subject is also well covered in Truxal.

As an illustration of the Guillemin-Truxal method, consider once again
the control of the plant given in Fig. 2.2-5a. Assume that the desired

closed loop performance is given as

c(s) . 160 _ 160 (2.3-4)

R(s) [(s+2)2+22](s+20) s +2452+883+160

Equation 2.3-2 may be solved for ((s), with the result that ©(s) is

160
5
s(s +24s5+88)

G(s) =

The resulting Gc(s) from Eq. 2.3-3 is

(s+3) (s+10) _ _(s+3) (s+10)
82+245+88 (s+4.6) (s+19.4)

GC(S) =

The final closed loop configuration is pictured in Fig. 2.3—2a. The out-
standing feature of the final result is the cancellation of the poles of
Gp(s) by the zeroes of Gc(s). In the ideal case this cancellation would be

perfect, and the order of the closed loop system is the same as the order




rR(s) ¥ 80/3(s+3) (s+10) 6 C(s)
- (s+4.6) (s+19.4) s (s43) (s+10)

Fig. 2.3-2a. The Guillemin-Truxal realization of a specific C(s)/R(s).

< . X %, (s)= C(s)
K = 80/3 3 3 Z 2 1 1
s+10 s+3 s
11/80
25/166

Fig. 2.3-2b. A state variable feedback realization that vields the same
C(s)/R(s) as in ¥ig. 2.3-2a.

3

Fig. 2.3-2. Alternate methods of realizing C(s)/R(s) = 160/s +2452+885+160,

given the fixed plant of Fig. 2.2-5a.
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of the plant being controlled. In this sense, the Guillemin-Truxal approach
is much like that of optimal control theory, and different from those series
compensation methods that do not rely on pole-zero cancellation. It will be
shown later that in some cases it is highly desirable to increase the order
of the system over that of the unalterable plant.

Fig. 2.3-2b is the realization of the same transfer function of Eq. 2.3-4
igh the use of state variable feedback. The use of state variable feed-
back alters pole locations through the use of feedback, rather than cancelling
them with zeroes. Because the mechanism by which new pole locations are
realized is basically different, one might suspect that the state variable
feedback design procedure would not suffer from the limitations that are im-
posed upon the Guillemin-Truxal method. This is indeed the case.

One obvious restriction of the Guillemin-Truxal method is a limitation
to stable Gp(s). If Gp(s) has poles in the right half s plane, these cannot
be cancelled with zeroes. Because state variable feedback simply alters
pole locations rather than cancelling them, Gp(s) is not restricted to being
stable when state variable feedback is used.

The Guillemin-Truxal method requires that C(s)/R(s) be chosen not only
to meet desired system specifications, but also to insure that all of the
poles of the open loop transfer function G(s) lie on the negative real axis.
The following is a quote from Truxal, page 297.

The imposition of the additional constraint that all poles of the open

loop transfer function lie on the negative real axis is not only neces-

sary if the synthesis (of Gc(s)) is to be simple, but also frequently
desirable to ensure that the transfer functions of the compensation
networks be realizable by RC networks.

Thus 1t is seen that the difficulty in the Guillemin-Truxal method stems

largely from the necessity to realize a rather complicated Gc(s). This prac-

tical difficulty does not arise in the use of state variable feedback. In
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Fig. 2.3-2b, for instance, no Gc(s) at all was needed to realize the desired
system response. Even in cases where series compensation needs to be added,

the basic building block has the transfer function

K‘(T:S+Yi)
T (sv8))

where Ty is either 1 or 0. This is the familiar lead or lag circuit, but it
is always used with feedback. As many of these basic elements as are needed
mav be used, although seldom are more than two required.

The basic theoretical limftation of the state variable feedback method
is the same as that of the Guillemin-Truxal Method. The closed loop transfer

function C(s)/R(s) cannot have a smaller pole-zero excess than that that

originally existed in Gp(s).
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The Heq Method -- The Simplest Case

In a previous section two methods of system representation were outlined
which might serve as the basis for a design procedure. The Geq(s) represen-
tation indicated how the use of state variable feedback might be considered
as altering the pole locations of the open loop transfer function. The
Heq(s) representation supplied an alternate interpretation of the effects of
atate variasble feedback. Tt was shown that state variable feedback might bhe
considered as introducing (n - 1) zeroes in the feedback path, while G(s) is
left unaltered. Regardless of which method of system representation is used,
the resulting C(s)/R(s) is the same, and the poles of this svstem transfer
function may be located as desired.

In the remainder of this chapter we shall use the Heq(s) representation
exclusively. Thé reason is not that it provides an easler means of system
synthesis, but rather the Heq(s) formulation provides a convenient method of
critically evaluating the results of state variable feedback. The Ceq(s)
formulation does not prove suitable for evaluation purposes on the root locus
diagram simply because the pole locations of Geq(s) are functions of the
amplifier gain, K. 1In the discussion of the Heq(s) representation, 1t was
specifically noted that Heq(s) is not a function of K, and hence root locus
methods might be effectively used. The preference for root locus methods is
a personal preference of the authors.

The design procedures outlined in this section apply only to the simplest
case when no series compensation need be added before the design procedure is
started. In this case Gc(s) is 1, and G(s) = Gp(s). Such a situation arises
when

1. Gp(s) has the correct number of poles required in C(s)/R(s).

1 1
2. The zeroes of Gp(s), if any, are the desired zeroes of C(s)/R(s).
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It is possible to conjure up other situations in which no seriles compen-

sation is needed, as when only some of the zeroes are in the desired locations,
and C(s)/R{s) is to have less poles than exist originally in Gp(s). Cases

like this are considered as pathological cases. Only cases for which conditions
1 and 2 are satisfied are discussed here. The pathological cases present no
theoretical problems, but they do complicate the presentation.

The Heq methoad of system synthesis for the simplest case consists of the

five following steps.

1. Assume all state variables are available, and represent the final
closed loop system as in Fig. 2.2-3.

2. Choose the desired closed loop response, C(s)/R(s).

3. TFrom the g&ock diagram of 1, find C(s)/R(s) in terms of the ki's,
preferably by the use of the Heq(s) block diagram reduction.

4, Equate the answers from 2 and 3, and solve for the ki's b& equating

coefficients of 1like powers of s.

5. If all of the state variables are not available, use the known
values of the ki's to determine suitable series or minor loop
compensation.

In cases where the plant contains an integration, 1t is usually assumed

at the outset that k, = 1, and the above procedure is carried out in terms of

1

the k,, 1 = 2, 3, ...n, and K. By setting k, = 1, this insures zero steady

1’

state position error for step inputs.

1

As an illustration of the above design procedure, consider the system of
Fig. 2.2-5. This figure is already drawn in the form required by Step 1.
In line with Step 2, let us assume that the desired closed loop response is

given by

R i
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160
[(s+2) + 227 (s+20)

C(s)/R(s) =

) 160
3

5 (2.4-1)
s” + 245 + 88s + 160

This is a closed loop response with zero steady state error for step inputs,
as C(0)/R(0) = 1. The response is dominated by a set of complex conjugate
poles at s = -2 + j2, Heq (s) for this system may be written down by
inspection as
= +
Heq(s) hys (s+3)/2 + kys + 1

k3sz + (3ky*2k,) s + 2
= - (2.4-2)

Here k1 has been assumed to be 1 to insure the zero steadv state error.

The transfer function in the forward loop of the Heq(s) representation is
just G(s), here equal to Gp(s), since no series compensation is added in the

simplest case. Thus C(s)/R(s) may be written in terms of k k3, and K as

2’
6K
~ s (s+3 ) ((s+l0 )
C(s)/R(s) = k.s® + (3k. +2k.) s + 2
. 6K o 3 3 27 7
s(s+3) (s+10) 2
< 6K (2.4-3)

3

s + (13+3Kk,) s + [3043K (3k +2k,)] s + 6K

3
This completes step 3.

Step 4 is.accomplished by equating coefficients of like powers of s in
the denominators of Equation 2.4-1 and 2.4-3, The following 3 algebraic
equations result.

6K = 160
13 + 3Kk, = 24

3
30 + 3K (3k3+2k2) = 88
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These algebraic equations are easily solved to give
K = 80/3
k3 = 11/80 (2.4-4)
k, = 25/160

The final system is pictured back in Fig. 2.3-2b, where it is compared
with the Guillemin Truxal realization of Fig. 2.3-2a. Before going to step
5, let us continue with the comparison by examining both systems on the root
locus diagram. A systematic method of evaluation of the state variable
feedback system involves the following steps.

a. Use the values of the ki's to find Heq(s).

b. Determine the zeroces of Heq(s).

c. Locate the poles and zeroes of G(s) Heq(s) on the s plane. Also

locate on the s plane the closed loop poles of C(s)/R(s), ad an
aid in drawing the root locus.

d. Sketch the root locus to insure that the desired stability and
sensitivity benefits that can be achieved through state variable
feedback actually have been realized.

For the problem under discussion, Heq(s) is found by substituting the

now known values of k2 and k3 into Eq. 2,4-2. The result is

11 (s245.285+14.5) _
160

Heq(s) = 11/160 [(s+2.64+32.75)(s+2.64-32.75)]

Steps ¢ and d are indicated on Fig. 2.4-1, with the closed loop poles enclosed
in square boxes. The root locus for the corresponding Guillemin-Truxal
realization is given in Fig. 2.4-2. It should be gtressed that at the desired
gain, the two systems are identical from an input-output point of view. If

viewed from the point of view of varying gain, the state variable feedback
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syitem has obvious advantages. As the gain is varied from 160 to infinity,
the dominant poles of the state variable feedback system change very little,
and the damping ratio stays almost constant. The system is insensitive to
gain changes as far as response or stability is concerned. Such is not
the case for the ceomparison system using series compensation.

The method of system evaluation that was used above is based upon the

use of Heq(s), and strictly speaking, this is not part of the design procedure.

The design procedure was complete once the values of ko, k3, and K were speci-

fied in Eq. 2.4-4. However, the analysis of the final design is considered
so important, that here the two are treated almost as one under the title
of the Heq(s) method.

In order to demonstrate further the superiority of the state variable
feedback method over the series compensation method, let us pursue the analysis
of this example a bit further. While the root locus of Fig. 2.4-1 indicates
the extreme ingensitivity to gain changes that has been realized through state
variable feedback, no indication is given as to the resulting insensitivity
for changes in pole locations. Insensitivity to pole location is quite
important, either because the initial pole location is not known exactly, or
because the pole locations may actually change during the operating life
of the system. This happens in aircraft control systems, for instance, where

the damping due to the atmosphere changes radically as the plane flys from

sea level to 30,000. The change is slow enough so that the system need
not be considered as time wvarving, but the change in pole location can be
critical.

Assume that in the example being considered that the design is complete,

and that kz, k3, and K are as specified in Eq. 2.4-4. Assume further that
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the pole at 5 = ~3 1s allowed to take on different values. For sake of

generality, this pole location may be designated as being at a, rather than
at -3. This case is pictured in Fig. 2.4-3a. A variety of questions may be
asked now, depending upon the amount of detail desired in the answer. One
might ask is the system stable for all o, or given a fixed new pole position
at o = ul, is the system still relatively insensitive to gain changes, as
previously, or if both a and K are allowed to vary, is stability still main-
tained. We will answer all of these questions for the system of Fig. 2.4-3a,
not because these are questions that need to be answered in every problem,
but because the answers to these questions demonstrate the desirable cqualities
that have been realized through the use of state variable feedback.

First consider the case where K is fixed and a is allowed to vary from
0 to infinity. The question of stability or location of the closed loop
poles for any specific value of o may be answered by plotting a root locus
diagram vs. o rather than K. This is a standard procedure, discussed by
Kuo, (Kuo, 1962) for example, under the heading of "Root Locus Plots with
Variable Other than Gain', If the characteristic equation

1+ G(s) Heq(s) = ¢

is expressed with a written as a gain term, the result is that

5 a%) (s+21) = -1 =1 /180° (2.4~-5)

s+ 21 s° + 258 + 160

The poles of Eq. 2.4-5 are located at s = -20.1 and s = -.45%j2.6. The
root locus vs. o is plotted in Fig. 2.4~-4, and, of course, for a = 3, this
locus goes through the desired pole locations of C(s)/R(s), as required in
Eq. 2.4-1. The closed loop system is stable for all 0 < a < =,

As a further bit of analysis concerened with this same problem, assume

that the pole at a is actually located at the origin, rather than at the
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gl(s) = C{(s)

3 3 2 1
s+10 s+ox s
11/80

257160

Fig. 2.4-3a.

The example of Fig. 2.2-5 and Fig. 2.3-2b redrawn with

the pole at s=-3 relocated at s=-a.

xl(s) = C{s)

Fig. 2.4-3b.

Fig. 2.4-3,

80 3 Z 2
st+21 st+a
2554160
160

The system of ¥ig. 2.4~3a redrawn to leave the pole at «a.

Example system in which the pole at s=-3 is assumed to lie at
an arbitrary point «a.
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design point of s = -3, This case is easv to consider, since we already
know the closed loop pole locations when K is 80/3 from Fig. 2.4-4. Let
us examine a normal root locus diagram and see once again how the damping

ratio varies when K wvaries. When a2 = 0, G(s) is

16
Gy = 20
s” (s+10)
and Heq(s) 1is
1182 + 255 + 160
Heq(s) =

160
= 11/160 (s+1.13+:2.87) (s+1.13-32.87) = 11/160 [(3+1.13)2+2.872}
The root locus diagram for this system is given in Fig. 2.4~-5. ©HNote that
although the damping ratio is decreased by a significant amount, it remains
relatively constant for a wide range of K. And this is despite the fact that

k k3, and K were chosen for a pole location of s = -3 rather than zero.

29
Finally, it is possible to show that this system is stable for any a

and any K. This 1s easily done by redrawing the final s&stem so that the

pole at a is not moved, and so that a does not appear any where else in the

open loop transfer function. This may be done in terms of a pseudo Geq(s)

and a pseudo Heq(s), as in Fig. 2.4-3b. The open loop transfer function is now

K (s+6.4)
s (s+21) (s+a)

Here K is left arbitrary, since we wish to indicate stability for any K.
If an asymptotic Bode diagram is now drawn for the amplitude of the open
loop transfer function, it is noted that no value of a can be chosen such
that the slope on the Bode diagram is never greater than -2, or 40 db..
This is sufficient, though not necessary, to indicate that the phase shift
never exceeds 180 degrees, and hence the system is stable for any gain and

any a. The comparison system using the series equalizer is not stable for
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any K even 1f the pole at a is located at the design value, s = -3.

So much for this example, which is meant to show that even in the simp-
lest case surprising benefits may be realized by using state variable feed-
back. As yet we have still assumed that all of the state variables are avail-
able, so that we have not had to use step 5 of the design procedure. This
is the subject of the next section what to do when all of the state variables
are not available. Before proceeding to that section . however, it is important
to indicate that the highly desirable stability and sensitivity properties
exhibited by the previous example are not necessarily inherent in the state
variable feedback approach. A simple example serves to illustrate the point.
The plant is given in Fig. 2.4-6 as

.
Gp(s) =G (s) = S(s48)

and the desired closed loop response is assumed to be
C(s)/R(s) = 3 7= 3 2
(s+1}“ + 1 s+ 28 + 2

Only one feedback coefficient is present, and Heq(s) is

Heq(s) = kz s + 1

C(s)/R(s) in terms of k2 and K

C(s)/R(s) = — .
s” + (4+Kk,) s + K

and the resulting values of K and k2 are
K= 2

k, = -1

Thus Heq(s) is
Heq(s) = -(s-1)

and G(s) Heq(s) is

G(s) Heq(s) = “20 (2.4-6)
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xl(s) = C(s)

Fig. 2,4-6a. The given plant tc be controlled.

xl(s) = C(s)

Fig. 2.4-6b. The state variabtle feedback configuration used to control the
plant of Fig. 2.4-6a.

Fig. 2.4-6, A system in which stability is not realized for all gain.
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The root locus for Eq. 2.4-6 is plotted in Fig. 2.4~-7. Tor high gain the
system Is unsgtable.

The reason for this undesirable result is that the system is being asked
to respond with a time constant much longer than the Iinherent time constant
of the system. We return to this example later after the general design pro-
cedure has been given and show there that it is not only possible to realize
the desired closed loop poles at s = -1 t j1, and at the same time keep the
system stable for all K, but the closed loop poles at s = -1 * 41 remain at

exactly that point for all K.
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2.5 All State Variables Not Available-The Simplest Case.

The previous section outlined a design procedure that was called the
Heq(s) method. This procedure consisted of five steps, and applied only to
the simplest case. The simplest case was defined as that restricted class
of problems in which no series compensation need be added in order to realize
the desired C(s)/R(s). 1In such instances the form of the unalterable plant,
Cp(s), is compatable with the form of the desired closed loop response.

Not only was the previous section limited to the simplest case, it was
also assumed that all of the state variables were available for measurement
and control. In this section we continue to treat the simplest case, but
now assume that all of the state variables are not available. 7Two general
methods are available to deal with this problem. The first method utilizes
minor loop equalization, and the second uses series compensation. It may
seem a contradiction to say that series compensation can be used in the simplest
case, when we initially assumed that the simplest case required no series com-
pensation. 1t is true that the simnlest case needs no series compensation in
order to make the given plant compatible with the required C(s)/R(s), and thus
no series compensation need be added prior to the calculation of the ki's.
However, once the ki's have been calculated under the assumption that all of
the state variables are available, series compensation may need to be added
if this assumption is to be violated.

The simplest method is the use of minor loop compensation. Instead
of feeding back the state variables through constant elements, the ki's,
minor loop compensation makes use of dynamic elements in the feedback paths.
Consider the case when the i th state variable is not available, as in Fig.
2.5-1la. The direct approach is to generate the unknown state variable from
the previous one, as indicated in Fig. 2.5-1b. This generated state variable

must still be fed back through the same constant element, k But now there

io
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1+1 i+1 Ry
s + ai+1 s +o
ki*l

\(0
i
Fig. 2.5-1a. The general feed back structure associated with the state
variables x, and x, ..
i i+1
B! i+l Ky
+ +
STi41 STy
“i41
X, K,
k, =
s+a
Fig. 2.5-1b., The generation of the state variable Xy
K L Kiv1 erol S
. -y
Sq}ai*’l 9«1’1
k'!\‘i
+ Bl -l *
. k¥ PR AT
i+l s+ai i+l s+ai

Fig. 2.5-1c.

Fig. 2.5.

A block diagram equivalent to Fig. 2.5-1b.

Procedure used to design the minor loop compensator when a
state variable at xy is not available.

F ol
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are two feedback paths in parallel that start at the same state variable and
end at the summer. These mav be added, with the result as indicated in
Fig. 2.5-1c. Xote that the resulting compensation is just a simple pole,
zero pair, as a typical lead or lag network.

The use of minor loop compensation is illustrated with the same exampie
that has been used in the past. The plant to be controlled is pictured in
Fig. 2.2-5a, and the desired closed loop transfer function is given in
Eq. 2.2-4. The final design, assuming that all state variables are available
is given in Fig. 2.2-2b. Step five of the design preocedure states "If all
of the state variables are not available, use the known values of the ki’s
to determine suitable series or rminor loop compensation.” Here we are inter-
ested specifically in minor loop compensation, and the starting point of our
design is Fig. 2.3-2b, which is repeated here for convenience as Fig. 2.5-2a.

Assume initially that the state variable X, is not available. Using
the procedure illustrated in Fig. 2.5-1, Fig. 2.5-2a is redrawn to indicate
the required minor loop compensator. This is almost a trivial step, and the
desired closed loop poles are realized as before.

Heq(s) is still

2
11 (s°+5.285+14.5) _
Heq(s) 160 (2.5-1)

and the root locus of Fig. 2.4-7 still applies:

Once again let us emphasize that the results of any procedure that is
used to realize C(s)/R(s) are identical, as long as all parameters are those
assumed at the outset of the problem; Here if the pole at s = -3 is_at this
assumed location, then Heq(s) is as before when all state variables were
available. If the pole at s = -3 1s actually at some other point, then the
state variable xzis only approximately generated, and the result is not the

same.
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A
X . x,(s) = C{(s)
80/3 > > 2 2 !
s+10 s+3
11/80
P5/160

Fig. 2.5-2a.

The final design, assuming all state variables available.

80/3

xl(s) = C(s)

s+10

s+3

11(s+5.27)

80(s+3)

Fig. 2.5-2b.

Fig. 2.5-2.

!N
+

The final design, assuming x

2 is not available.

An example illustrating a minor loop compensator when the

state variable at x, 1s not available.




v

45

If the state variable X, is not available, it mav be generated by
feedback around the external gain element, K. It is for this reason that we
have consistently separated the external gain from that which is inherent
in the plant that is being controlled. The resulting minor loop compensated
system is illustrated in Fig. 2.5-3a. Here the feedback element around K
may be combined with K to determine an equivalent series equalizer. This
is done in Fig. 2.5-3b. The Heq(s) associated with Fig. 2.5-3b has only one
zero, while that associated with Fig. 2.5-3b has two zeroes, and is, in fact,
given by Eq. 2.5-1. The author's preference is clearly the feedback case
of ¥ig. 2.5-3a, and hopefully the reader concurrs. However, the series
compensation of Fig. 2.5-3b does serve to introduce the idea of series com—
pensation. It is possible to realize the series compensator of Fig. 2.5-3b
as in Fig. 2.5-3c, where once again feedback is employed. Here, however,
no dynamic elements are included in the feedback path.

Before considering the use of series compensation, let us conclude the
discussion of minor loop compensation by considering the case when both
X, and x4 are not available. Again the procedure is very simple. The first
step is accomplished in Fig. 2.5-2b, and all that remains to be done is to
shift this compensator to the left by one block. This is done in Fig. 2.5-4.
Once again Heq(s) is still specified by Eq. 2.5-1, and the root locus of
Fig. 2.4-1 is still applicable. This time the compensator in the feedback
path in Fig. 2.5-4 has a second order denominator, but this is not difficult
to realize. Had the system been nth order, and had only the output variable
been available, then the denominator of the feedback compensator transfer

function would have been nth order. This might be quite difficult to realize,

but no more so than the insertion of the series compensator that would be
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L x, (s} = C{s)
i— s+10 s+3
11/80 > }
s+10
25/160
+]+
Fig. 2.5-3a, A minor loop design when X4 is not available.
s) = C
rR(s) T 80/3(s+10) 3 %3 2 (=) (s)
—_— s+21 s+10 s+3
-+
25/160
+
Fig. 2.5-3b. A series equalizer design, determined from * 2.5-3a.
+ Kc(s+10) 4 3 9 X, xl(s) = C(s)
s+ 8 s+10 s+3
K,
57160

Fig. 2.5-3c. A method equivalent to a) and b) above, using an augmented

Fig. 2.5.

state variable, X,

Compensation methcds when X4 is not available.
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‘zl(s) =C («

s+10

s+3

33(s+5.27)

+ i 80 (s+3) (s+10)

Fig.

2.5-4, The minor loop equalization when both X, and X, are

not available.
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required by the use of the Guillenin-Truxal technique.

This example points out an important feature of feedback compensation.
Here feedback is around the gain element, and since Heq(s) is still specified
by Eq. 2.5-1, and since the root locus of Fig. 2.4~1 still applies, it is
clear that this system is still relatively imsensitive to gain. YPcodback
always decreases the sensitivity‘of the output to variations in those elements
that have feedback around them. This is the fundamental reason for the use
of feedback.

This last example serves as another introduction to series compensation.
If the feedback compensator is  umped in with the gain element, the Guillemin-
Truxal realization of ¥Fig. 2.3-2a results. The aim of the remainder of this
section is to discuss means by which such series compensation can be realized
by feeding back the state variables associated with the compensator itself.
The methods discussed here will then serve as an introduction to the general
case, which is treated in the next section.

A study of the methods of realizing a series compensation network by
feeding back the variables associated with the compensator itself is compli-
cated by two facts. Frrst the realization is not unique, and second, the
equations involved are not linear algebraic equations. A systematic method
of approach is necessary to avoid being bogged down in algebra. The three
drawings of Fig. 2.5-3 serve to illustrate the problem. A series compensator
equivalent to the feedback compensation system of Fig. 2.4-3a is illustrated
in Fig. 2.5-3 . We wish to realize this transfer function by the scheme
indicated in Fig. 2.5-3c. Why? Because if k4 is anything other than zero,

then a reduction of the svstem to the Heq(s) form results in an Heq(s) that

has 3 zeroes. By a wise choice of ka, it may be possible to insure that




these zeroes remain in the left half s plane, so that the root locus of the
resulting system never crosses into the right half plane for any value of
gain.

At the same time that k4 is being chosen to give the overall system
desired properties, one must insure that the choice of k& does not place
unreasonable demands on either KC or §, where these quantities are defined
in Fig. 2.5-3c. Let us examine the requirements on Kc, §, and k4, as specified
by the desired series compensator. The constants Kc, 4§, and k4 must be
chosen to insure that

K (s+10)
_c .

_s+38 _ 80/3 (s+10)
K, k, (s+10) (s+21)

s + 6

(2.5-2)

1+

The two are equal if the following are satisfied.
K

—c
1+ ch4

= 80/3 (2.5-3)

and

§ + 10 K k&
£ 5 .01 (2.5-4)
K
c 4

1+ k

Only two equations must be satisfied, and three constants are available.
Thus one of these unspecified constants is arbitrary, and our first goal is
to pick a resonable value for one constant. If Eq. 2.4-3 is solved for Kc’

the result is

80/3
K. = 80 k
- 4

3

This places an upper bound on k4 of 3/80, if Kc is to be kept a positive number,
It 1s possible to place a second bound on k& by examining the expression for

Heq(s). Heq(s) may be written in terms of k4 directly from Fig. 2.4-3c¢c as

. s(s*10)(s+3) | 255
H (® = X 6 *Jeo v 1




3 2
+ e +
. k4 s 13 k4 s + (30 k4 + .938) s + 6
6

To 1insure that the zeroes of Heq(s) remain in the left half plane, it is
only necessary that the numerator of Heq(s) be a Hurwitz polynomial.
Application of either the Routh or Hurwitz criteria indicates that the only

limitation on k4 is that

k, >0

4

Thus k& is bounded on both sides, as

<

0k, * 3/80

4
Because of this range of possible values of k&’ an infinite number of sol-
l utions to this problem exist. Let us rather arbitrarily choose k&/toj be 2/80.

Then the resulting K and s are

KC‘ 80

8 = 43

The final design is pictured in Fig. 2.5-5. For this system Heq(s) is

34 1382 + 67.5 s + 240

_ 8
Heq(s) 240

_ (e84 [(s2.3)% + (3.4
240

The root locus diagram corresponding to Fig. 2.5-5 is given in Fig. 2.5-6.
This is the first time we have fed back a state variable other than those
inherently associated with the system. The state variable X, is always
available, since it is associated with the compensator. It is for this

reason that the author maintains that the case never exists in which the

Guillemin-Truxal series compensation shculd be used. In the series compensator

there are always available state variables which can be fed back.
On the basis of this single example, let us postulate a design procedure

to be used in the design of series compensation networks. Here it is assumed
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that one has already determined what the desired compensation network must
be.

1. Establish a feedback configuration to realize the desired compensa-
tion network. This feedback configuration will contain an unknown
gain, unknown pole locations, and unknown feedback coefficients,

2. TInitially let all of the feedback coefficients be O except kn +1°

3. Obtain limits on the kn +1 by examining the expression for gain,
Kc’ as a function of kn +1 and by examining requirements of Heq(s)
to insure that all of the zeroes lie in the left half plane.

4, Choose kn + 1 which establishes Kc and the remaining unknown poles
in the compensation network,

5. Repeat the procedure in order to determine kn and a new KC.

+ 2,

In the example just solved, only the kn“& 1 = k4 coefficient existed,
and it was not necessary to repeat the procedure. If both x, and x, are not
available, then it is necessary to repeat the procedure.

Let us now consider the case in which both x, and x, are not available.
The required feedback compensation network is given in Fig. 2.5-5. Iif the
inner loop is reduced, the result is the Guillemin-Truxal realization of
Fig. 2.3-2a. Thus the series compensation network that is to be realized is
taken from this latter figure to be

x, () 80/3 (s+3) (s+10)

E(s) a2 + 245 + 88

This is shown in Fig. 2.5-7a. Fig., 2.5-7b is the feedback configuration
involving only the coefficient k4 that might be used to realize the series
compensator of Fig. 2.5-7a. This feedback configuration is shown in open

loop form in Fig. 2.5-7¢, and of course the transfer functions of Figs. 2.5-7a

and 2.5-7b must be equal. These are equal if the following equations are
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E(s) 80/3 (s+3) (s+10) *4
' s2+245+88
' Fig. 2.5-7a. Scries compensation network to be realized.
Els) « (s+3) (s+10) %4
¢ (s+a) (s+b)

Fig. 2.5-7b. Step 1 of the series compensation design procedure.

Kc (s+3) (s+10)
(a5 I3F kK
1+xtk4 s2+ Lixékl K + 3Uch4+ab
e 4 I'+X.k,

Fig. 2.5-7c. The open loop equivalent of Fig. 2.5-7b.

Fig. 2.5-7. Alternate representations of the required series compeansation network,
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satisfied.
Kc
TFK_x, 807
c 4
a+b+ 13K k4
: C 4. 9 (2.5-5)

-
1 Kc k4

30 Kc k& + ab

1 +K Xk,
c 4

= 88

Step 1 of the series compensation design procedure is satisfied by Fig. 2.5-7.
Step two may be partially satisfied by solving the first equation above for

The result is

the compensation gain, Kc, in terms of k&'
K - 80/3
c 1-k, 80/3

and, as before, k4 may not exceed 3/80 if the compensator gain is to be
positive. The other bound on kA must be established from Heq(s). The over-
all system is pictured in Fig. 2.5-8, and for this system Heq(s) is

- (s+10) (s+3) (s)
Heq(s) = kA ' ¢ + 1

k, s + 13 k, s* + 30 k& g + 6

Application of the Routh or Hurwitz criteria indicates the mumerator of

Heq(s) has zerces in the left half plane for k, > 1/65. The bounds on k

4 4

have now been established as

1/65 < kA <3/80

A k4 in this range must be selected, so let us again pick kh = 2/80. For

this value of k,, K = 80, and even though Eqs. 2.5-5 are highly nonlinear,
4 c

their solution for a and b is quite easy once k4 and KC are known. The
pole locations at a and b turn out to be
a =5 or 41

b= 41 or 5
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Hence the compensator of Fig. 2.5-7b 1s completely specified. This compensator
is shown in Fig. 2,5-9a.

The compensator of Fig. 2.5-9a has an internal state variable, since it
is described by a second order polynomial in s, or equivalently, bv a second
order differential equation. All that remains to be done is to determine a
suitable feedback coefficient associated with this state variable. That is,
the series compensation procedure must be repeated again, in order to deter-

mine a new compensator gain and a feedback coefficient, k The block diagram

5
of Fig. 2.5-9b i1llustrates the final form of the feedback realization of the
compensator network. Fig. 2.5-9¢ illustrates that portion of the Fig. 2.5-9¢
which is yet unspecified. From a comparison of Fig. 2.5~9a and 2.5-9b
results the equality that is indicated in Fig. 2.5-%9c¢. This equivalence

is expressed in the equation

xcl
— lk (s+10)
trkks _ 80 (s+10)
« + 10 K 1k s+5
s + c 5
1+ 1
¢ 5

Here the notation Kcl is used to indicate the new gain that is needed. The

above equation yields the following

= 80 (2.5-6)

= 5 (2.5-7)

Eq. 2.5-6 may be solved for Kcl, as

1 80

c 1 - 80 k5

K (2.5-8)

To insure that Kc1 is positive,
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E(s) 80 (s+3) (s+10)
{(5+3) (s+41)
2/80
Fig. 2.5-9a. The first iteration on a feedback realization for
the desired compensation network.
+ | x
E(s) K s+10 5 s+3
c s+a s+41
kS
+
2/80
Fig. 2.5-9b. The final form of the feedback compensator.
E(s) K ! s+10 —_— 80(s+10)
+ __ c s+o — o+5
ks

Fig. 2.5-9c¢c.

Fig. 2.5-9.

The problem yet to be solved so that the feedback

compensator is completely specified.

Feedback realization of the reguired series compensator.
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- < 1/80
KS 1780

The determination of the other bound on kS depends on Heq(s). The

block diagram of Fig. 2.5-10 illustrates the overall system from which Heq(s)
must be calculated. The resulting Heq(s) is quite complicated, but the zeroes

goes negative. Lel us

of Heq(s) remain in the left half s piane even if kS

take 0 as the lower bound, so that k_ is bounded by

S
0 < kg <1/80
As an arbitrary choice, let k5 = 1/160. Then from Eq. 2.5-8, KL is 160,
and from Eq. 2.5-7, a is found to be zero. The final system is that of
1 .
Fig. 2.5-10, a, th Kc 160, k5 = 1/160 and a = 0. Heq(s) is
3 2
gy =5 * 20,68 + 106 s + 192
eq 192
. 2 2
o (st1l4) [(s+3.3)" + 1.77]
192
G(s) is now
960
| 6() = 5———
s° (s+41)

and the root locus for G(s) Heq(s) is plotted in Fig., 2.5-11. The sensitivity

and stability benefits realized when Xy and X, were both present have been

returned.

Two features of this example problem merit more discussion. In Fig. 2.5-9b

the reader may have wondered what prompted the author to realize the transfer

function 80 (s+10)/(s+5) with the feedback configuration involving k Why

5
not split up the gain, and enclose (s + 3)/(s+4l) with kS’ or one of the two

other possible pole zero combinatioms. In realizing lead lag compensators,

that is two poles and two zeroes, the largest zero and the smallest pole are

always put into the first block. This insures that Heq(S) will have zeroes

in the left half s plane for the largest range of the last feedback coefficient.
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The second fact that needs discussion is the freedom of choice of k4
and kS to a range of values. In the example the author picked k4 and kS
in a rather arbitrary manner, simply because no criteria have vet been
established for their choice. It is felt that kh and k5 should have been
picked with a view toward a minimization of the effects of the most likely
parameter variation. Work in this area is continuing.

This concludes the discussion of the simplest case. 1In the general
case, when all of the state variables are not available, a combination of

minor loop compensation and series compensation with feedback of the

compensator state variables is used to realize the desired C(s)/R(s).
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The General Case

The general case is concerned with systems in which the given Gp(s) is
not adequate to realize a desired C{s)/R(s). The most common case in which
this situation arises is the case in which zeroes are required in the closed
loop transfer function. Usually Gp(s) does not contain zeroes, or i{f they
are present, they are not located in the desired place. Then series compen-—
sation must be added to realize the required zerces. This increases the
order of the open loop transfer function Gc(s)Gp(s), since Gc(s) is now no
longer one. This situation is very similar to that encountered in the previous
section when all of the state variables were not available, and series com-
pensation was used with feedback to realize the desired closed loop response.

Because of the detail that was presented in the last two sections in
the discussion of the special case, the discussion of the general case is
made considerably easier. In the discussion that follows it is assumed that
G (s) has p poles and z zeroes, and that none of these zeroes are located
in the positions required by the desired C(s)/R(s). If unwanted zeroes are
to be eliminated and not replaced by other zeroes, this may be accomplished
in the following way: =z of the poles of C(s)/R(s) can be located at the
zero positions, so that the resulting C(s)/R(s) would have no zeroes and
(p - z) poles. If the desired denominator of C(s)/R(s) is to be of higher
order than (p - z), then series compensation of the form 1/(s+61) must be
added for each additional pole that is needed.

Often it is desired to add zerces, either because of a desired fre-
quency response requirement or because a high value of velocity error co-
efficient is required. In the presentation thus far it has always been assumed
that k., was chosen to insure an infinite position error coefficient. 1In the

1

examples, we have always considered systems with one integrator, so that the
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value of kl is always 1. An infinite velocity error coefficient may also
be realized quite easily.. 1f the poles of the closed loop transfer function

are designated by Ai' and the zeroces by v¥y,, Truxal {1955).has shown that an

i

infinite velocity error coefficient is realized if

i . . ...1 _
oLt Y

sl L 2.6-1)
1 2

=]
¢
[
-
N
<
=]

Hence zeroes are often added in such a position so as to satisfy equation 2.6-1.

Zeroes cannot be added without adding a pole at the same time. The basic

compensation unit in the case that zeroes are to be added or are to replace

unwanted zeroes is (s+Yi)/(s+61), where \f is known. This is just the usual

lead or lag network, and is of the form considered in the previous section.
The previous paragraphs can be summarized quite briefly. Zeroes in

C(s)/R(s) can be eliminated by placing poles under them, and they can be

added by using a series compensator of the form (s+yi)/(s+6i). The zero of

this compensator appears as a zero in the closed loop, and thus its location
is specified in advance. Additional poles are added by adding a compensator
of the form 1/(s+di). The position of the n poles of C{s)/R(s) mavy then be
controlled by the adjustment of the ki's, K, and the poles of the series
compensators. The design procedure is thus the following.

1. Choose a desired C(s)/R(s).

2. On the basis of the unalterable Gp(s) and the required C(s)/R(s),
specify the form of the necessary Gc(s). Gc(s) need contain only
compensation of the form 1/(s+61) or (s+71)/(s+5i). Only the poles
p of the compensation elements are unknown.

3. Determine the values of K, the ki's, and the poles of the compen-
sation networks necessary to realize the desired closed loop
response. The ki's determine a tentative Heq(s) with (p-1) zeroes,

designated as Hteq(s).

-
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4. Synthesize the series compensation network by feeding back its own
state variables, according to the procedure specified in the previous
section. This specifies the desired Heq(s) with (n - 1) zeroes.

5. Account for any unavailable state variables with the use of minor
loop compensation.

This general design procedure reduces to that of the special case in
the situation when Gp(s) and C{s)/R(s) are compatible. In that instance,

step two is automatically satisfied, and in step 3 the desired closed response

is used to find the values of K and the ki's, as there are no unknown values
of the compensator poles, since there is no compensator. In case some of the
state variables are unavailable, they mav be realized either by the synthesis
of a series network or by minor loop compensation.

The reader.may now appreciate why so much time was spent in the previous
gection on the series and minor loop compensation methods. Both are used
in the general case, in order to avoid the necessity of realizing an unwieldly
series network. For example, if two zeroes need to be added and two state
variables are unavailable, then a second order series compensator and a second
order minor loop compensator would be used, The series compensator would be
realized with feedback, however.

A more rigorous approach to this problem using a more modern matrix
approach assures us that the design procedure outlined above always works.
The proof amounts to showing that there are as many equations as there are
unknowns, and hence a solution éxists. But while the solution always exists,
it may not always be a solution that appeals to the designer. That is, zeroes
may appear in the right half plane, and the sign of Heq(s) may even be ﬁegative,

so that it is necessary to draw a 0 degree root locus in order to investigate

the results. These are handicaps that are rather easily overcome, but the
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ability to overcome these handicaps relies upon a good understanding of root
locus techniques. In this section we apply the general design procedure as
it is given, and accept the results as they are. After all, the results are
indeed excellent, if one can choose any C(8)/R(s). There is not even a prob-
lem of realizing zeroes in the right half plane, since they are only equiva-
lent zeroes that do pot exist in the physical system.

As a first example, consider the plant to be controlled as that given

in Fig. 2.6-1. Here Gp(s) is given as

4 (s+2

Gp(s) = s (s+4) (s+8)

Fig. 2.6-1 contains more information than simply the transfer function
of Eq. 2.6-1, as the figure indicates the pole with which the zero is associ-
ated, assuming as before that we have used actual physical state variables.
The object of this design 18 to simply remove the zero at's = -2, and at the

same time insure that the closed loop response is specified by

C(s)/R(s) = 430 (2.6-2)

[(s+3)2 + 3%)(s+25

In order that this might be done it is necessary to add a series compensation

element of the form 1/(s+61), and actually design to a C(s)/R(s) given as

450 (s+2)
(s+2) [(s+3)2 + 3%](s+25)

C(s)/R(s) =

__. 450(st2)
s* + 3387 + 23082

=

(2.6-3)
+ 786s + 900
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u Lis+2) |73 1 » | 1 @ =

s+8 st+4 s

Fig. 2.6-1a. The given plant to be controlled, such that C(s)/R(s)
450

(#3232 [s425)

R(s) + K x4 4(s+2) 3 1 2 1 1

s+l s+8R s+4 s

Fig. 2.6-1b. Means by which the plant of ¥Fig. 2.6-1la may be controlled te
realize the desired C(s)/R(s).

RGs) & &K X 1 %2 1 x,(s) = C(s)
— s+8 s+4 s
F k
<3
_F
K
2
+

Fig. 2.6-1¢. An obvious simplification of Fig. 2.6-1b, with &=2,
Fig. 2.6-1. The first example of Section 2.6-1.
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Figure 2.6-1b ifllustrates the configuration of the system with the series
compensation element in place. It is apparent that this problem is somewhat
artificial--a rather obvious choice of the series compensator would be one
with a pole at s = -2, which would simply cancel the zero. The svstem would
then be effectively that of Fig. 2,6-1c, which could then be treated as the
special case. Let us proceed with this problem for purposes of illustration,
is associated with the pole at s = -4.

Step 1 of the procedure has already been accomplished with the specifi-
cation of C(s)/R(s), and step two is also complete with the drawing of

Fig. 2.6~-1b. It is now necessary to solve for K, k and §.

2> Ky
For the system of Fig. 2.6-1b Heq(s) is

2

Heq(s) = k s” + (4k3+k2) s +1

3
and G(s) is

4K (s+2)
s(s+4) (s+8) (s+68)

G(s) =

so that the resulting C(s)/R(s) 1is

4K(s+2)

c(s)/R(s) =

sa + A83 + B52 + Cs +D
where
A= 12 4+ § + 450k3
- LV R} +
B 32 + 128 + 4K\4K3+k2) 900k3
C = 325 + 4K + 8K(4k3 + k2) (2.6-4)
D = 8K
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Tt is apparent from Egq. 2.6-3 that the following equalities must be satisfied

A= 33 cC = 786

B = 230 D = 900
The simultaneous solution of Eqs. 2.6-4 results in the following values of
the unknown system elements

K = 450/4

kz = 60/450

k3 = 19/45

6= 2

Qur initial suspicion has proved to be correct, and § is 2. For these

values of the parameters, the tentative qu(s), Heq(s) is

-

Hteq(s) - 19/450 [s% + 17.7s + 23.6)
2 2
= 19745 [(s+3.58)% + 3.267%)

and the resulting root locus diagram 1s indicated in Fig. 2.6-2. This appears
to be a completely satisfactory result. The zeroes of Hteq(s) lie in the left
half plane, and are in fact verv close to the desired pole locations, indicating
insensitivity to gain variations. The asymptote goes off at -180°, and there
is no reason to proceed with step 4. If one or more of the state variables
were unavailable, this shortcoming could be overcome with minor loop compensa-
tion, as in the preceeding section.

The above problem is quite trivial, but it does illustrate the method
by which additional poles are added by the use of the simplest type series
compensator, 1/(s+8). In this case the pole was added right under a zerc,
to cancel the zero. Because the zero appeared in the left hand block of
the given plant, cancellation compensation resulted from the application of

the general design procedure.
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The plant to be controlled in the second example is indicated in Fig. 2.6~

|

[
F

3a. This example involves the substitution of a desired zero for an unwanted
one. The desired zero is chosen so as to insure that the final closed loop
system has an infinite velocity error coefficient. A second order example
has been chosen here to simpliify the algebra, as we eventually hope to add
additional series compensation in this problem. The zero has not been placed
in the left hand box to insure that cancellation compensation does not result,
The desired C(s)/R(s) for this second example is

6 (s+3

C(s)/R(s) = >
(s+3)" + 3

> (2.6-3)

Here the gain has been chosen so that C(0)/R(0) = 1, to insure zero position
error for step inputs, and the zero position at s = -3 has been chosen to
satisfy Eq. 2.6-1. This results in a zero steady state velocity error for
ramp inputs. Siﬁce the given plant already had a zero which must be elimin-
ated, the C(s)/R(s) that must actually be realized is

6 (s+2) (s+3)
(s+2) [(s+3)% + 3%

C(s)/R(s) =

6 (s+2) (s+3)

53 + 852 + 30s + 36

=

From Fig. 2.6-3b, G(s), Hteq(s), and C(s)/R(s) may all be written in terms

of the unknowns, K1 k2, and §. These expressions are

2K (s+2) (st3)
G(s) = s (s+a) (st4)

t B s (k2+l) + 2
H eq(s) - s + f
Cls)/R(s) = 2K (s+2) (s+3)

53 + As2 + Bs + C




2

s+2

xl(S)

s+&

Fig. 2.6-3a. The given plant to te controlled such that C{s)/R(s)

72

_ 6(s+3)

(s+3) 2+32

xl(s) = C(s)

K s+3 2 2 s+2
s+£ s+4 s
k2

Fig. 2.6-3b. Means by which the plant of Fig. 2.6-3a may be controlled

to realize the desired C(s)/R(s).

Fig. 2.6-3. The system for the second example.
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where
A=8+ 4+ 2K (k2+l)
B = 48 + 4K + 6K (k2 + 1)
C=12K

By equating coefficients of equal rowers of s in Egqs. 2.6-5 and 2.6-6, the
following values result for the unknown system parameters.
K=13
ky = -4/3
§ =6
and H® (s) is
n eq

yt (s) = -1/3 (s-6)

eq s +

Both G(s) and Hteq(s) are known, and the root locus corresponding to G(s) Hteq(s)
may be drawn before steps 4 and 5 are complete. The root locus for this
example is plotted in Fig. 2.6-4, and because of the negative sign in Hteq(s),
a zero degree locus must be drawn. Observe that in this figure Hteq(s) has
a zero in the right half plane, and two asymptotes go toward zeroes at infin-
ity. The realization of the compensation network with feedback can be used
to eliminate these difficulties, hence let us proceed to step 4. This is,
in fact, a major reason for realizing the compensation network with feedback.

The final system configuration is given in Fig. 2.6-5. In order to make
an intelligient choice of k3, it is necessary to determine Heq(s)’ in order
that one bound may be placed on k3. By simple block diagram reduction of
Fig. 2.6-5, Heq(s) is found to be

K. s2 + (4ko-2/3) s + 4
3 3 (2.6-7)
2 (s+2)

Heq(S) =

Routh's criteria requires k3 to be greater than 1/6.
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r=—==-== T T e T A
| i
| |
: i
1+ K s+3 *3 ! 2 s+2 x(s) = €s)
! ~ € + ! +
H s 51 t s+4 s
! {
i |
| i
1
H k |
i 3 !
1 {
B 4
-4/3
Fig. 2.6-5. The final system configuration, indicating that Kc’ 61 and k3

have

~

[od
5, =
<

3

-~
it

yet to be specified.

12
15
1/4

These are later found to be



The dotted portion of Fi 2

g.
that goes to realize the series compensation network, 3(s+3)/(s+6).
equation that must be satisfied here is

KC(S+3)
S5 BERE
Kc k3(s+3) s + 6

s + §1

1+

4]
*t

Kc
T T (st
+
1 ch3 i 3 (s3]
61 + 3Kc k3 s + 6
1+K %k
c 3

s +

By equating gains it is seen that

.6-5 indicates the portion of the system

The
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K, -,

1+ Kc k3
or

3

Kc 1 - 3k3
For Kc to be positive, k3 must be less than 1/3. Thus k3 is bounded by

1/6 < k3 < 1/3
Let us assume a middle value of k3 as erqual to 1/4. Then Heq(s) from Eq., 2.6-7
is

W () - St A3 s+ 16 (s+2/% + (3.96)

eq 8 (s+2) 8 (s+2)
'and Kc and 61 are easily found to be

Kc a 12

61 = 15

Once again, the final system is pictured in Fig. 2.6-5, where all system

parameters are now known. G(s) Heq(s) is now known to be




77
ovn rey o 26 (s42)(s+3)  [(s+2/3)% + (3.96)%]
SU8Heq 13 T s (sth) (s415) * 8 (s+2)

and the corresponding root locus is indicated in Fig. 2.6-6. The desired
response has been realized, with infinite position and velocity error
coefficients, and the resulting closed loop system is stable for all gain.

If it is assumed that the desired closed loop response is a stable
response, then the general design procedure outlined in this section and
illustrated by the last two examples always works. The truth of this state-~
ment is discussed under the heading of the '"Design of High Gain Systems'.
What is important here is that the application of the general design procedure
is tedious. A lot of algebra is involved, particularly in finding the bounds
on the feedback coefficients that are associated with the compensator state
variables. Then, in order to evaluate the answer, Heq(s) must be determined,
and this involves the factoring of a polynomial of order (n-1). If the
reader has any doubt about the amount of algebra involved, he is urged to
work the first example of this section in the case when the zero is associated
with the pole at s = -4, rather than in the given location.

A second drawback is that the designer has little idea of what effect
the arbitrary choice of the compensator feedback coefficients actually has
on the over all Heq(s). In the examples here, we assumed some middle value
simply for lack of something better to do.

In defense of the general design procedure of this sectio;, it should
be pointed out that all of the problems that have to be solved involve
linear algebraic equations, and these are easily programmed. Further more,
the general design procedure always works. In the following section an

alternate design procedure is outlined that may appeal to those with a

classical control background.
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Alternate Procedures

The previous section details a formal procedure for realizing exactly
a desired C(s)/R(s) 1in the general case in which the given plant is not
compatible with the desired closed loop response, The compensation that
was added was dictated by the differences between the pole and zero require-~
ments of the desired response and of the given Gp(s). Often this results
The presence of this zero is unfortunate for two reasons. The zero is never
cancelled by the poles of Heq(s), and hence this zero appears on the s plane
plot of the poles and zeroces of G(s)Heq(s). Also the presence of this zero
results in nonlinear algebraic equations that must be solved to evaluate
the unknown system parameters. In terms of the state space representation,

in physical variables it is no longer possible to describe the system as

g = Ax+bu

-

since a v dot term appears in the last equation. This would prevent a
transformation of variables from any other system of variables in which the
u dot term does not appear. Hence one of the basic motivations of this
section is the elimination of the zero in the left hand block of G(s).

A second motivation of this section is the desire to choose at the
outset the poles of the compensation network. If these pole locations
could be specified in advance, then the problem would be reduced to that
of the simplest case. Here it is advocated that the pole positions be
chosen on the basis of the knowledge of the desired closed loop response
and on the technicues for drawing-the root locus diagram.

It would be wrong to imply that the methods outlined in this section
actually constitute a design procedure. The contents of this section might

be regarded more as tricks that have proved to be helpful, and that have yet
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to be incorporated into any formal design technique. In a sense, then, this
section and the obvious inadequacies of this section begin to point up the
further work that must be done to complete the Heq(s) method.

The approaches of this section depend to a large extent upon the designers
knowledge of root locus methods. A few comments with regard to the root locus
method are in order here. Normally C(s)/R(s) has zeroes where G(s) has zeroes
and where H(s) has poles. Our H(s) is Heq(s), and its poles are all zeroces of
G(s), however C(s)/R(s) does not have two sets of zeroes, one from G(s) and
one from the poles of Heq(s). The only zeroes of C(s)/R(s) that appear are
the zeroes of G(s).

If a zero of Heq(s) is placed at the same location as a pole of G(s),
this does not mean that the pole and zero cancel. Rather, a branch of the root
locus always lies between this pole and zero, so that the placing of a zero of
Heq(s) on top of a pole of G(s) guarantees a closed loop pole at that location.
In the examples that follow, the zeroes of Heq(s) and the compensator poles
are chosen so that they coincide, and hence specify one of the closed loop pole

locations. At the same time, the factoring of Hea(s) is made simpler, since

R

one of 1ts zeroes is known. The idea is to shape the open loop transfer function
before state variable compensation is used.

In the previous section we considered the removal of a zero in the plant
of Fig. 2.6-la. The application of the general procedure resulted in cancella-
tion compensation, since the zero to be removed was located in the left hand
most block of G (s). As a first example of this section, let us consider the
removal of the zero when cancellation compensation is not quite so obvious,

The open loop plant is described in Fig. 2.7-la, where it is seen that GD(s) is

4 st21
Gp(s) "~ s+8 st4 s
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2.7-1a. The given plant to be controlled such that Eq. 2.7-1 may be
satisfied.
) 1 Xy 4 52 s 1 xy (s) =
& LAY
— s+61 s+8 s+4 s
4
k
3
Ky
2.7-1b. The means by which the plant of Fig. 2.7-1a may be controlled

to realize the desired C(s)/R{s).
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The desired C(s)/R(s) is still

c(s)/R(s) = 2“50»2 (2.7-1)
[(s+3)7 + 37]1(s+25)

but in order to eliminate the zero at s = -2, the C{(s)/R(s) that must be

realized is again

_450(s+2)
2, .2

{s+2} [ {s+3)" + 37](s+25)

C(s)/R(s) = -

(2.7-2)

450(s+2)
s + 3353 + 230 g2 + 7868 + 900

|
]

' The ultimate design configuration is shown in Fig. 2.7-1b. We desire to

pick 61 at the outset, so that the simpler procedures associated with the

simplest case can be used in the determination of all of the ki's and K. Let

us begin to plot the root locus of G(S)Heq(s)' The open loop poles of Gp(s)

are known, and the desired closed loop poles are also known. The zeroes of

Gp(s) are always cancelled by the poles of Heq(s), and hence these zeroes do

not appear on the s plane plot of G(s)Heq(s). The open loop poles of Gp(s)

yet to choose § If 61 is chosen to be -2, then the only way in which a closed

1°

loop pole can also be located at -2 is to have a zero of Heq(s) at s = -2,

l and the closed loop poles of C(s)/R(s) are indicated on Fig. 2.7-2a. We have

This 1s indicated in Fig. 2.7-2b. It is immaterial that G(s) now has a pole
and a zero both at s = -2, and this may represent a confusion factor, since Heq(s)
will also have a pole and zero at s = -2, The primary point being made is that
to insure a closed loop pole at s = -2, this may be done by putting a pole of
the compensator at that same place. In order to satisfy the root locus require-
ments, a zero of Heq(s) must also lie in the same place.

In Fig. 2.7-1b, all of the poles of the open and closed loop transfer

functions are indicated. As far as the drawing of the root locus is concermed,
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25 20 15 -10 -5
=
Fig. 2.7-2a. The open loop poles of G (s) and the closed
loop poles of C(s)/R(s).p
X
X
= XXX
O
=
%ig. 2.7-2b. The addition of the pole 61 at s = -2, and the necessary
zero of Heq(s)-

Fig. 2.7-2¢. Known branches of the root locus. Branches must pass
through the points s=-3+ j3,
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the pole zero pair at s = -2 do cancel each other, although a closed loop pole
does exist at that location. From a knowledge of the root locus method, the
branches are indicated on Fig. 2.7-2c.

Thus far the design may be considered as tentative. We have chosen the
pole of the compensator at s = -2, and we are simply looking to see if this is
a logical choice. 1In order to complete the root locus of Fig. 2.7-2c, two

more zeroces of neq(s) must be added. In order to insure that the branches
of the root locus pass through the points s = -3 + {3, it seems reasonable
that a set of complex conjugate zeroes must exist somewhere in the vicinity
of s = -3 + 33. The exact location is not known, and will not be until Heq(s)
is determined. But it is concluded that the choice of the compensator pole
at s = -2 was a reasonable one, and the system has been reduced to the simplest
case.

Two methods of proceeding are now apparent. We may treat the problem
as a problem in the simplest case, and thus realize the desired C(s)/R(s)
exactly. An alternate approximate approach would be to pick the remaining
zeroes of Heq(s)' Then Heq(s) would be specified completely, and K would be
chosen for zero steady state error. The closed loop poles of C(s)/R(s) would
not be exactly as desired, depending on the guess of the remaining zeroes of
Heq(s). In this case it should not be too difficult to guess the approximate
location of the zeroes of Heq(s)’ particularly after a number of problems of
this type have been worked. Both solutions are included below.

Let us treat the problem as one of the simplest case first. Then K and
the ki's must be found to realize C(s)/R(s) exactly. For the counfiguration

of Fig. 2.7-1b G(s) is

4K

G(8) = Te¥8) (s+8)
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and H (s) 1is
eq

(s) L _ ; k453 + (12k, + 4k, + 4k2) s?

Heq'®) = Tty 4 3

+ (32k4 + 16k3 + 8k2 + 4) 5 + %}

so that
Ce)/R(s) = o2 . (2.7-3)
s + As” + Bs” +Cs + D
where
A= 14 + Kk4
B = 56 + K(12k4 + 4k3 + dkz)
C= 64 + K(32k4 + l6k3 + 8k2 + 4)

D = 8K
By equating coefficients of 1ike powers of s in Eqs. 2.7-2 and 2.7-3, the
resulting values of K and the ki'svare

K = 450/4

k2 = 60/450

k, = -114/450

3

k4 = 76/450

For these values of the ki's, Heq(s) is

B (s) - 7687+ 6965° + 288s + 3600
eq 4 x 450(s+2)

_ 19(s+2)[(s+3.58)% + (3.3)%)
450 (s%2)

The resulting root locus is shown in Fig. 2.7-3. The closed loop pole at

8 = -2 is not shown on this diagram since it does not appear in C(s)/R(s)

»

as it is cancelled out. This is an important point.
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Let us examine the magnitude of the error that would have occurred if
the pole locations of Heq(s) had been assumed to be at s = -4 + j4, in addi-
tion to the pole at s = -2. This is now a root locus problem, and not much
else. Since the pole and zero, and closed loop pole, at s = -2 do not affect
the drawing of the root locus, these are not indicated on the s plane. The
root locus is indicated in Fig. 2.7~4. The complex conjugate closed loop
poles are chosen to be those near the desired closed loop poles. A number
of choices are possible. On the figure we have chosen the complex conjugate
poles to have the same real part as the desired closed loop poles, and the
imaginarv part is 3.4. This is higher than the desired value, but not much.

1f this deviation 1s too great, then one might choose a different set of

zero locations for Heq(s). For the closed loop poles as indicated on Fig. 2.7-4,

the gain 1s determined from the root locus diagram to be 11.3, and the remaining

closed loop pole is at s = ~17.5, determined graphically. These values seem
significantly different from the desired ones, found exactly just above, to
dictate a redesign. This may be done quite simply, and even without choosing
new values for the zero locations of C(s)/R(s). Just increase the gain until
the gain is a desired value, or until the pole at s = -25 is realized. Note
that increasing the gain here gives a higher damping ratio and a still faster
response, so that the usual problems that are associated with increasing gain
are not encountered in this problem.

This last problem brings out two important points. One need not use the
Heq(S) method at all, and one need not design to a specified C(8)/R(s). Any
design procedure with which the designer is familiar may be used. In addition
to the poles of the given plant, (n - 1) zeroes are available from Heq(s).

Any procedure whatever may be used to position these zeroes in an advantageous

fashion. The preceeding solution made use of the root locus diagram, because
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we were still thinking in terms of closed loop poles. The design might have
been completed on the Bode, Nyquist, or Nicholes chart as well, to anv design
criteria that is suitable. The presence of the (n - 1) zeroes makes the
realization of the system specifications immeasurably easier than if an
additional pole had to be added every time a zero was needed.

The second point is that the design started by initially altering the
open loop transfer function of the system. Specifically, an open loop pole
was located at exactly the spot where a closed loop pole was desired. 1In
the limit, one might locate all of the open loop poles where the closed loop
poles are desired, and then place the zeroes of Heq(s) at these same locations.
Then the closed loop poles would remain at a fixed location, independent of
gain. This is the procedure used in the next example.

The addition of series compensation, even poles without zeroes, has no
destabilizing effect, as long as the compensator state variables are fed back.
Because of this fact, any amount of series compensation may be added.

This example was considered earlier in Section 2.4 to show that stability
for all gain is not necessarily an inherent characteristic of state variable

feedback. The plant is given as
. S
Gp(s) S(S‘H&)
and is pictured again in Fig. 2.7-5a. The desired closed loop response is

C(s)/R(s) = — 2 22 5 (2.7-4)
s  + 28 + 2 [(s+1)" + 17]

As shown in Section 2.4, this response can be realized with no series compen-
sation by placing a zero of Heq(s) in the right half s plane. The object here
is to introduce series compensation to modify the plant characteristics so
that right half plane zeroces are not necessary. The open loop poles are to

be located at the desired closed loop pole locations, so that the zeroes of
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Fig. 2.7-5a. The plant to be controlled such that C(8)/R{a)is
as given in Eg. 2.7-4%

1 4 s+é 3 1 1 1

+ ‘ s+1 s+1 stb4 s

Fig. 2.7-5b. Modification of the open loop transfer function to
rcalize the desired open loop transfer function.

ig. 2.7-5. Modification of the plant open loop transfer function.
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Heq(s) may be located at the same place.

In order to locate the open loop poles at s = -1 + i1, series compemsation

is introduced as in Fig. 2.7-5b. The state variable at X, is redundant, and

the open loop transfer function from the input to X, is l/(s+l)2. Feedback

around this element resuits in the complex conjugate roots s = -1 + jl, as

desired.

It ies now necessary to use state variable feedback to realize the desired

closed loop responmse. This is done in Fig. 2.7-6. For the system of Fig. 2.7-

6, Heq(s) is

= 4
Heq(s) kas(s 1) + kzs + 1

2 3 2

=g +

1
. Stx

3 3
Since the zeroes of Heq(s) are to lie on the desired closed loop poles, Heq(s)

must equal Eq. 2.7-4. This is easily accomplished if

kz =

k4 =

N N

The effective system, with all inner loops removed and Heq(s) in evidence is
pictured in Fig. 2.7-7. The root locus for this system is shown in Fig. 2.7-8.
The final closed loop poles are located at s = -1 + j1, and an additional pole
exists along the negative real axis. The effect of this pole may be made
negligible by using large gain K. The location of the complex conjugate

poles is independent of K.

It is interesting to examine the Nyquist diagram for G(s)Heq(s). This

is shown in Fig. 2.7-9, Notice that the return difference is always greater

than 1.
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In view of the above Nyquist diagram, consider the case in which the
gain K is not a linear gain, but is nonlinear. Then, in order to use the
Popov stability criteria, it is necessary to draw a modified Nyquist diagram,
where the real part of the function being plotted, W{(jw), is equal to the
real part of G(jw)Heq(jw), and the imaginary part of W(jw) is equal to
mG(jw)Héq(jw). The shape of the resulting plot of W(jw) is identical to
that given in Fig, 2.7-9. 1In chort, 4t is possible to draw a Topov linme
indicating global asymptotic stability for any single valued nonlinearity
lying in the first and third quadrant, and whose value for zero input is
zero. Thus, the state variable feedback used here has proved to be effec-
tive in realizing the desired response in the linear system, and it has also
proved to be effective in stabilizing a class of nonlinear systems. This
serves to introduce the subject of the next chapter, namely the outline of

future work.

Conclusion

This chapter has outlined a desizn procedure called the H equivalent
method. The H equivalent method utilizes state variable feedback, and is
characterized by the following properties:

1. The design criteria is the desired closed loop response, C(s)/R(s).

2. The desired closed loop response can be realized exactly.

3. The only mathematical tools necessary are the usual tools of the
control engineer, the Laplace transform and the frequency domain.

4. The implementation of the design procedure regquires that all of the
variables be fed back through constant elemgnts. Fortunately, these
feedback coefficients are often less than one.

5. A method of minor loop equalization, in which dynamics are included
in the feedback paths, results if one or more of the state variables

are unavailable.




Fig. 2.7-9.

The Nyquist diagram corresponding to G(s) H (s) of
Fig. 2.7-7. A plot at the FPopov function w?ﬂw), is
identical in shape, that is, it lies along the negative
imaginary axis.

96
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6. If none of the state variables are available except the output, the

method reduces to that of Guillemin and Truxal.

The H equivalent design procedure is significantly different from many

conventional design procedures. Often conventional design procedures require

manipulation of the open loop transfer function in order to force a desired

closed loop response. This may be accomplished on the Nyquist, Bode, Nichols,

or root locus diagram. Sometimes the
of the open loop transfer functionare
such as gain or phase margin, and the

prime importance. In contrast, the H

the closed loop system specification,

based are also "open loop" criteria,
realization of a stable system is of
equivalent method deals directly with

and the open loop transfer function is

never altered simply to insure stability requirements. These are always

satisfied, assuming, of course, that the desired closed loop system response

is a stable response.

For these reasons and because the 6 properties listed above are highly

desirable from either a practical or a theoretical point of view, it is the

author's feeling that design procedures as outlined in this report, or closely

related to the ideas presented here, will soon replace the conventional cut

and try procedures of picking series equalization.
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This report has outlined a method for the synthesis of single input,
single output, linear control systems through the use of state variable
feedback. Perhaps the most important contribution made here is utiliza-
tion of the familiar frequency domain techniques to implement the command
of modern control theory, that is to feed back all of the state variables.
The outstanding feature of state variable feedback is the complete lack
of concern for the stability of the resulting design. And not only is
the resulting system stable, but any C(s)/R(s) that does not require a
smaller pole-zero excess than exists in the plant to be controlled may be
realized. Since (n - 1) zeroes are available in Heq(s), it is possible
to always insure the return difference, 1 + G(s)Heq(s), is always greater
than 1. In terms of modern control theory, this is necessary if the re-
sulting system is to be optimum for a quadratic type integral performance
index.

The design procedure outlined in Chapter 2 is predicated upon the
desire to realize a specified C(s)/R(s), and at the same time insure
stability for any gain, K, where K is the gain element located in the
left hand most block of the open loop system. It is important to point
out that the resulting system is not necessarily stable for changes in
gain in other parts of the system. In a conventional control system
with only output feedback, the location of gain within the loop is not
important. Here,where many feedback paths are utilized, the location of
gain is important, as clearly the gains of the various blocks influence

the locations of the zeroes of Heq(s). Hence, it is now felt that an

98
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inordinate amount of attention was paid to the realization of stability
for any K. More attention must be directed to design procedures that
result in satisfactory responsc for variations in other of the system
cains, as the Ki‘s, or the ki's. Of course this is just a part of an
overall sensitivity problem, where any of the system parameters may be
assumed to vary. The general area of sensitivity of the system response
to variations in plant parameters is thus an important area for future
investigations, and, in fact, work in this area is already underway.

It was noted above that the concentration on the realization of
a stable system for any K may have been unfortunate. In another sense,
it was quite fertunate, as the realization of stability for any gain
serves to introduce the use of state variable feedback techniques into
the design of nonlinear systems. It was noted at the end of Chapter 2
that the presence of (n - 1) zeroces in Heq(s) made it quite easy to
satisfy the Popov stability criteria. This suggests the design of
intentionally nonlinear systems, where, for example, the input may be
forced to saturate in order to avoid saturation phenomena of the power
elements in the loop. If the input saturating element has a very high
gain, this element then looks like a relay, with a switching hypersurface
defined in n space by the feedback coefficients of all of the state
variables., A PhD thesis concerned with the synthesis of nonlinear
systems through the use of state variable feedback will be submitted
as a part of the next report.

One further area of interest is evident from the problem statement
given as the first sentence of this chapter. The ultimate concern is
not for single input, single output systems, but for systems with multiple

inputs and outputs. In the nuclear rocket problem, for instconce, the
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material of this report may scrve as a basis for the design of many of
the controllers that are included within the main loop. However, the
overall system being controlled has two inputs and two outputs. It is
felt that work on the multiple input, output system should be guided at
least in part by the resultc of the sensitivity investigat ons mentioned

above.
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